Installation of DESI began in February 2018 at the Nicholas U. Mayall Telescope at Kitt Peak National Observatory near Tucson, Arizona.
“With DESI we are combining a modern instrument with a venerable old telescope to make a state-of-the-art survey machine,” says Lori Allen, director of Kitt Peak National Observatory at the National Science Foundation’s National Optical-Infrared Astronomy Research Laboratory.
Over the past 18 months, a bevy of DESI components were shipped to the site from institutions around the globe and installed on the telescope.
Among the early arrivals was an assembly of lenses packaged in a large steel barrel, together weighing in at three tons. This corrector barrel sits over the 4-meter primary mirror of the Mayall Telescope and provides an expansive field of view. The lenses, each measuring about a meter across, were successfully tested in April.
DESI’s focal plane, which carries 5,000 robotic positioners that swivel in a choreographed “dance” to individually focus on galaxies, is at the top of the telescope.
These little robots—which each hold a light-gathering fiber-optic cable that is about the average width of a human hair—serve as DESI’s eyes. It takes about 10 seconds for the positioners to swivel to a new sequence of targeted galaxies. With its unprecedented surveying speed, DESI will map over 20 times more objects than any predecessor experiment.
The focal plane, which is comprised of a half-million individual parts, is arranged in a series of 10 wedge-shaped petals that each contain 500 positioners and a little camera to help the telescope point and focus.
The focal plane, corrector barrel and other DESI components weigh 11 tons, and the Mayall telescope’s movable arm that DESI is installed on weighs 250 tons and rises 90 feet above the floor in the Mayall’s 14-story dome.
Among the more recent arrivals at Kitt Peak is the collection of spectrographs that are designed to split up the gathered light into three separate color bands to allow precise distance measurements of the observed galaxies across a broad range of colors.
These spectrographs, which allow DESI’s robotic eyes to “see” even faint, distant galaxies, are designed to measure redshift, which is a shift in the color of objects to longer, redder wavelengths due to the objects’ movement away from us. Redshift is analogous to how the sound of a fire engine’s siren shifts to lower tones as it moves away from us.
Postioner for Dark Energy Spectroscopic Instrument |
There are now eight spectrographs installed, with the final two arriving before year-end. To connect the focal plane with the spectrographs, which are located beneath the telescope, DESI is equipped with about 150 miles of fiber-optic cabling.
“This is a very exciting moment,” says Nathalie Palanque-Delabrouille, a DESI spokesperson and an astrophysics researcher at France’s Atomic Energy Commission who has participated in the selection process to determine which galaxies and other objects DESI will observe.
“The instrument is all there. It has been very exciting to be a part of this from the start,” she says. “This is a very significant advance compared to previous experiments. By looking at objects very far away from us, we can actually map the history of the universe and see what the universe is composed of by looking at very different objects from different eras.”
Palanque-Delabrouille’s institution, CEA, contributed a specialized cooling system to optimize the performance of the light sensors (known as CCDs or charge-coupled devices) that enable DESI’s broad color-sampling range.
Gregory Tarlé, a physics professor at the University of Michigan (UM) who led the student teams that assembled the robotic positioners for DESI and related components, said it’s gratifying to reach a stage in the project where all of DESI’s complex components are functioning together. UM delivered a total of 7300 robotic positioners, including spares. During the production peak, the teams were churning out about 50 positioners a day.
“It was quite a process,” Tarlé says. “We were at the limits of precision for these production parts.”
The positioners were installed in the focal plane petals at Berkeley Lab, and after assembly and testing the completed petals were shipped to Kitt Peak and installed one at a time on the Mayall Telescope.Now that the hard work of building DESI is largely done, Tarlé said he looks forward to DESI discoveries.
“I want to find out what the nature of dark energy is,” he says. “We finally have a shot at really trying to understand the nature of this stuff that dominates the universe.”
Editor's note: This article is adapted from an article originally published by Lawrence Berkeley National Laboratory